AEDV HIGHLIGHTS
27TH EADV CONGRESS
12-16 September 2018
PARIS, France
Oncologic Dermatology and Surgery

Dr. Antoni Bennassar
Dr. Läuchli (Zurich, Suiza): C. Mohs controversies

- Definition of different techniques: 100% evaluation margins
- 1 application criteria:

Mohs micrographic surgery for basal cell carcinoma: evaluation of the indication criteria and predictive factors for extensive subclinical spread*

I. Hoorens,1 A. Batteauw,1 G. Van Maele,2 K. Lapiere,3 B. Boone1 and K. Ongenae1

1Department of Dermatology, University Hospital Ghent, Ghent, Belgium

*Correspondence: I. Hoorens, Department of Dermatology, University Hospital Ghent, Belgium.

www.esms-mohs.eu
Dr. Suzanne Olbricht (Maine, US):
- Mohs surgery in patients >80 years old:
- Use of the Barthel Index, activities of daily living, in dermatologic surgery in patients aged 80 years and older.
- (José C. Pascual, MD, Isabel Belinchón, PhD, and José M. Ramos, PhD)
- Characteristics of Surgical Procedures in the Spanish Mohs Surgery Registry (REGESMOHS) for 2013-2015.)

Dr. Suzanne Olbricht (Maine, US):

- Curettage prior to 1º stage: doesn’t affect nº of stages
- Curettage prior to Mohs’ Micrographic Surgery for Previously Biopsed Nonmelanoma Skin Cancers: What Are We Curetting? Retrospective, Prospective and Comparative Study
- Dermatologic Surgery. 31 (1):10-15, JAN 2005
Dr. JR Garcés (Barcelona): neoadjuvant treatment (Vismodegib) in the BCC locally advanced

- RC 33.8%, RP 32.9%, medium duration 22m
- **As neoadjuvant it reduces the area 27%:**
 - Symmetrical-Concentric? Asymmetrical?
 - C. Mohs rescue?

Controversies regarding differentiated scammous areas:
- Adjuvant RDT after C. Mohs
Original Investigation

Fast Evaluation of 69 Basal Cell Carcinomas With Ex Vivo Fluorescence Confocal Microscopy Criteria Description, Histopathological Correlation, and Interobserver Agreement

Antoni Bennàssar, MD; Cristina Carrera, MD; Susana Puig, MD, PhD; Antoni Vilalta, MD; Josep Malvehy, MD, PhD

Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery

A. Bennàssar,¹ A. Vilata,¹ S. Puig¹,² and J. Malvehy¹,²

¹Melanoma Unit, Dermatology Department, Hospital Clínic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Villarroel 170, 08036 Barcelona, Spain
²Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
Dr. M. Möhrle (Netherlands): Rapid Lump examination

Original Article

Diagnostic accuracy of a new ex vivo confocal laser scanning microscope (CLSM) compared to H&E-stained paraffin slides for micrographic surgery of basal cell carcinoma

Nina Peters, Melanie Schubert, Gisela Metzler, Jan-Philipp Geppert, Matthias Moehrle

Rapid Lump Examination as a New Aid to Speedup Mohs Micrographic Surgery: A Pilot Study

Veenstra, Marleen MD; Ostertag, Judith MD, PhD; Verhaegh, Marc MD, PhD; Nuessel, Nils BSc; Moehrle, Matthias MD, PhD
www.esms-mohs.eu

Dr. Ríos Buceta (Madrid):

- **Kinesiotape** (self-adhesive elastic band):
 - Prevents post IQ bruising
 - In areas and high risk patients
 - Economic and easy to use
www.esms-mohs.eu

Dr. E. Epstein (San Francisco, US): Founder of PellePharm

- **Patidegib (anti HH)**
- Formulated in a gel of external application
- FDA/EMA approved as orphan medication
- Proven anti BCC activity
- Phase 3 study for **preventive chemotherapy of BCC in patients with Sd Gorlin**
 (eepstein@pellepharm.org)
MELANOMA: GENETIC TESTING FOR RISK FACTORS

REMCO VAN DOORN (HOLANDA)
Melanoma: genetic testing for risk factors

- Europe: 0.5-2% risk of melanoma main population (20% M1)
- 22,000 deaths/year for MM
- MM → mutations:
 - Inherited (“genes”) + environmental (“lifestyle”) + replication errors (“bad luck”)
 - Occasional MM (90%) vs familiar (10%):

![Pie chart showing the distribution of mutations related to melanoma. CDKN2A is the most common mutation at 40%. Other mutations include CDK4, MITF, BAP1, TERT, and POT1. Polygenic and environmental factors are also mentioned.]

- CDKN2A > CDK4, MITF, BAP1 > TERT, POT1......50%
WHEN SHOULD WE DO GENETIC TESTING?

CDKN2A

- Family with 2 first-degree relatives with invasive melanoma, diagnosed in at least one patient before the age of 40
- Family with 2 first-degree relatives with invasive melanoma and a relative with pancreatic cancer
- Patient with 3 or more melanomas
- Patient with melanoma diagnosed before the age of 18
WHEN SHOULD WE DO GENETIC TESTING?

III. Suspicion of other hereditary tumor syndrome:

BAP1-associated tumor syndrome:
- Family history of melanoma + uveal melanoma, mesothelioma, renal cancer, cholangiocarcinoma
- Patient with 2 or more MBDTs

POT1-associated tumor syndrome:
- Family history of melanoma + glioma, CLL

MITF-associated tumor syndrome:
- Family history of melanoma + renal, pancreatic cancer
Melanoma: genetic testing for risk factors

WHICH GENETIC TEST?

- CDKN2A, CDK4
- BAP1, POT1, TERT, ACD, TERF2IP, MITF
- POLH, PTEN, BRCA2, BRIP1, POLE, OCA2, PRKN, RAD51B, EBF3, GOLM1
- MC1R, ASIP, TYR, IRF4, MTAP, ATM, MX2, CASP8, TERT, SLC45A2, AGR3, CCND1, PLA2G6, ARNT, PARP1, CDKAL1, TMEM38B, OCA2, OBFC1, FTO, CYP1B1

FOLLOW UP?

- DERMATOLOGIC EXPLORATION 2/YEAR
- CDKN2A: PANCREAS
- BAP1: FONDO OJO (MM UVEAL), TX-ABD (MESOTELIOMA-RENAL)
MOLECULAR TESTING FOR TARGETED MELANOMA

SUSANA PUIG (BARCELONA)
Molecular testing for targeted melanoma

- Somatic mutations in melanoma:

- In MM associated to nevus: BRAF/RAS also in patients in nevus: same origin UV

MCR: modulator of the ones before
Molecular testing for targeted melanoma

TARGET TREATMENTS:
- BRAF-inh: Vemurefenib, Dabrafenib
- MEK-inh: Trametinib, Cobimetinib

Better OS/DFS + less side effects

Prognostic value of BRAF mutations in localized cutaneous melanoma.

Nagore E, Requena C, Traves V, Guillen C, Hayward NK, Whiteman DC, Hacker E.
PMID: 24388723

Survival of patients with advanced metastatic melanoma: the impact of novel therapies-update 2017.

PMID: 28756457
Molecular testing for targeted melanoma

Mutation detection:
- More commercial kit for BRAF
- Immunohistochemistry
- **NGS**: multiple genes: genetic profiles for every MM → diagnosis, treatment implications
- “Liquid” biopsy: circulating tumor cells’ DNA (OCR)
 - Copies: the more tumor burden
 - Correlation with OS
 - It could identify patients who are candidates or refractory for target treatments
 - It could be elevated prior to relapse (can we advance treatment?)
 - It can monitor treatment
 - It could be positive for healthy patients: prevention?
SCC: MUTATIONS AND CLINICAL IMPLICATIONS

DANNY NASSAR
Clinical oncology: genetics, environment and clinical implications

- SCC
- Kinetocor gene mutations (KNSTRN), NOTCH1, Rras2....
- Multistep process: same mutations already present in QA → gradually adding more copies, amplifications, deletions...

Differentiation degree:
- No mutation types differences
- Yes: metilation type differences already present in original cell
BCC: MUTATIONS AND CLINICAL IMPLICATIONS

Nicole Basset-Seguin (Francia)
Clinical oncology: genetics, environment and clinical implications

- 85% occasional BCC: PTCH>>>SMO>>SUFU
 - Many other mutations MYCN, PPP6C, SKT19, LATS1, ERBB2, NRAS, KRAS,
 - MYC y Hippo-YAP: worse prognosis??

Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma.

Bonilla X1, Parmentier L2, King 3, Bezrukov F4,5, Kaya G6, Zoete V7, Seplyarskiy VB8,9,10, Sharpe HJ11, McKee T12, Letourneau A1, Ribaux PG1, Popadin

- Vismodegib /Sonidegib: inhibit via HH (SMO)
 - CBC locally advanced and/or metastatic
 - Intrinsic/acquired rare resistances:
 - Mutations/variants of SMO
 - Other downstream: SUFU, Gli....
 - Clonal selection not included by Vismodegib
ONCOGENIC MUTATIONS AND THE ENVIRONMENT

Julia Newton-Bishp (UK)
Clinical oncology: genetics, environment and clinical implications

- **UVR-MM RELATION:**
 - C Mutations \rightarrow T signed by UVR
 - UVR causes MM in all locations
 - MM caused by exposing, causing burns
 - Not clear whether chronic exposure causes MM:
 - SVit D synthesis: antiinflammatory
 - Photoadaptive mechanisms
 - People with low phototype should choose between Jobs with no exposition
CHECKPOINT INHIBITORS

JJ GROB (FRANCIA)
Checkpoint Inhibitors

- **ANTI-PD1/PD-L1 (CTLA-4):**
 - Prognosis of patients with MM-IV has changed
 - First drugs to prove:
 - Chronic control of the metastatic disease
 - Control after stopping treatment
 - Better response if combined: PD1-CTLA-4
 - Independent response regarding BRAF stage
 - **Optimal response after 3-6 months**
 - +LDH=-response
 - **When to stop? Not clear, 1-2 years**
 - Response after new progression
 - Hopeful results in adjuvant stages III and IV
CHECKPOINT INHIBITORS: ACQUIRED RESISTANCE

A. ENK (Germany)
ACQUIRED RESISTANCE TO CHECKPOINTS INHIBITORS:

The MM inhibits immunity in a very specific way to protect itself against the immune system:

- Alters tumor antigens
- Loss of specific antigens
- Activates suppressive PD-L1 molecules
- Inactivates alters LT-reg
- Changes in phenotype
- Induces hypoxia
OTRAS INMUNOTERAPIAS
A. Reich (Poland)
Otras inmunoterapias

- **T-VEC: ONCOLOYTIC VIRUS**
 - Local + systemic effect
 - Only in “injection” injuries
IMMUNOTHERAPY SIDE EFFECTS

J. BOLOGNA (US)
Immunotherapy side effects

- Treatment for cutaneous cancers but also generally used for other tumors
- The dermatologist must know them and know how to use them, especially because they are drugs used for various months (treatment y adjunvancy)
- Potentially bad systemic: colitis, hepatitis, encephalitis, hypotoroidism, SR insufficiency, DM 1, myocarditis.....
- 50% of patients will use cutaneous type: morbilliform, PA, DRESS/SJS/NET, sarcoidosis, vitiligo, PLEVA.....
- Energically treat with GC

Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline.

Brahmer JR¹, Lacchetti C¹, Schneider BJ¹, Atkins MB¹, Brassil KJ¹, Caterino JM¹, Chau I¹, Ernstoff MS¹, Gardner JM¹, Ginex P¹, Hallemeier S¹, Holter Chakrabarty J¹, Leigl NB¹, Mammen JS¹, McDermott DF¹, Naing A¹, Nastoupil LJ¹, Phillips T¹, Porter LD¹, Puzanov I¹, Reichner CA¹, Santomasso BD¹,